Object detection using boosted local binaries

نویسندگان

  • Haoyu Ren
  • Ze-Nian Li
چکیده

This paper presents a novel binary descriptor Boosted Local Binary (BLB) for object detection. The proposed descriptor encodes variable local neighbour regions in different scales and locations. Each region pair of the proposed descriptor is selected by the RealAdaBoost algorithm with a penalty term on the structural diversity. As a result, confident features that are good at describing specific characteristics will be chosen. Moreover, the encoding scheme is applied in the gradient domain in addition to the intensity domain, which is complementary to standard binary descriptors. The proposed method was tested using three benchmark object detection datasets, the CalTech pedestrian dataset, the FDDB face dataset, and the PASCAL VOC 2007 dataset. Experimental results demonstrate that the detection accuracy of the proposed BLB clearly outperforms traditional binary descriptors. It also achieves comparable performance with some state-of-the-art algorithms. & 2016 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BOOSTED LOCAL BINARIES FOR OBJECT DETECTION Anonymous ICME submission

We propose a novel binary feature for object detection encoding local neighbor patterns of different sizes and locations. Each region pair of the proposed feature is selected by RealAdaBoost algorithm with a penalty term on the structure diversity. As a result, useful features that are good at describing specific objects will be chosen to build the classifier. Moreover, the encoding scheme is a...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers

To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...

متن کامل

Improvements of Object Detection Using Boosted Histograms

We present a method for object detection that combines AdaBoost learning with local histogram features. On the side of learning we improve the performance by designing a weak learner for multi-valued features based on Weighted Fisher Linear Discriminant. Evaluation on the recent benchmark for object detection confirms the superior performance of our method compared to the state-of-the-art. In p...

متن کامل

Empirical Study of Boosted Weak Classifier in Object Detection Problem

In this paper, we study the use of boosted weak classifiers selected with AdaBoost algorithm in object detection. Our work is motivated by the good performance of AdaBoost in selecting discriminative features and the effectiveness of Classification and Regression Tree (CART) compared with other classification methods. First, we study the cascaded structure of the boosted weak classifier detecto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2016